
 

 

Abstract—In this paper we show the optimal design of the 

three-layered sandwich plates. The objective function contains 

the material and fabrication costs. The design constrains are the 

maximal stresses, the deflection of plates and damping of 

vibrations. The unknown is the thickness of the filling foam. By 

the mathematical method we define the minima of cost function 

and the optimal thickness of the filling layer of foam. The 

active constraint is the deflection, so we calculate of the costs 

of sandwich plate with the homogeneous plate. 

 

Keywords—Optimal design, reduction of costs, sandwich 

plate. 

I. INTRODUCTION 

HE suitable application of the mathematical methods 

of optimal design can reach, that the different 

constructions, products not only satisfy the requirements 

with the technical requirements, but they would be 

economical, too. The tasks of technical optimizations can 

be divided into two groups: structural and technological 

optimization. The structural optimization could make a 

group of topological optimization, shape optimization, 

size optimization and material optimization [1]. With the 

spread of the modern plastic foams parallel the sandwich 

constructions manufacture is accelerated. We can 

distinguish three types of structures: beams, plates and 

shells. The constructions of sandwiches generally make 

three layers (rarely more). The typical method of three 

layers construction of sandwich is that the outside layers 

are the faces (h1 and h3) generally made from some kind 

of metal and the inside layer is the core (h2) made from 

some kind of easy material e.g. plastic foam, as Fig. 1. 

shows it. 

 
Fig. 1. The structure of sandwich plate 

 

The facings are taking of normal stresses that come from 

the bending and compression. The core insures the 

working together of construction and takes up the nearly 

all shearing stresses. 

II. THE OBJECTIVE FUNCTION AND CONSTRAINTS 

A. Formulation of objective function  

The aim of optimization is the cost reduction of three 

layers sandwich plate fabrication that could be seen in 

Fig. 1. The faces made from alumina and steel (h1=h3=h) 

and the core made from polyurethane foam. We select 

unknown variable the thickness of foam (h2). The 

objective function (K) consists of the following elements: 

al cut c foam
K K K K K ,             (1) 

where Kal cost of alumina and steel that we calculate 

with the next form: 

al al
K k V,                 (2) 

where kal is the specific cost of alumina and steel. V is 

the volume of iron plates. Kcut is the cost of cutting: 
n

cut cut lv

i 1

K k l ,


               (3) 

where kcut is the specific cutting cost and lvi is the long 

of i-th cutting. Kt is the surface cleaning cost: 

c c c
K k A ,                 (4) 

where kc is the specific cleaning cost and Ac is the 

surface. At the sandwich constructions could be done by 

gluing or foaming fixing the core. Of late years the 

foaming is generally applied, so in our faculty we used 

this method, too. We calculated the cost of foaming by 

this form [2]: 
2
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where te is the time of preparation, Vh is the volume 

flow rate of foam, tki is the time of foaming, km is the 

specific coast of wage, ka is the coast of amortization of 

fittings and ffoam is the specific cost of foam. 

B. Formulation of constraints 

1. The constrains for the maximal deflection 

At the sandwich plates the shearing change of form is 

considerable, so we have to take care it. By the 

permanent split lateral loading have to be the maximal 
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deflection than the allowable (wall) [3]- [4]: 
4
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where p is the loading and 
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where Ω=m
2
+n

2
, ν is the Poisson’s ratio, E is the 

modulus of elasticity of facings and G2 is the shear 

modulus of core. 

2. The constraint for the maximal normal stress in the 

facings 

We can calculate the maximal normal stresses with the 

next formula and its values have to be smaller than the 

allowable: 

all
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3. The constraint for the maximal shear stress in the 

facings 

We can calculate the maximal shear stresses with the 

next formula and its values have to be smaller than the 

allowable for the material of facings: 

hall,

2
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4. The constraint for the maximal shear stress in the core 

It is typical at the sandwich construction that the gross 

of shear recourse the core takes up. In the core we 

calculate the maximal shear stresses with the next 

formula [2-3]: 

2max 2all6
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5. The constraint for the loss factor of faces 

The loss factors of metals are very small. Using of 

good damping materials at the sandwich constructions 

we can significantly increase this factor. To measure and 

calculate of vibration damping are several methods. In 

the [5] literature there is a connection that modified we 

could calculate the loss factor of sandwich plate (η) 

connection with the geometrical sizes and quality of 

materials. We prescribe that the loss factor of sandwich 

structure would be some percentages of damping factor 

of foam of polyurethane: 

2 1 1 1 1 1 2 2

*
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where c
*
is the prescribed loss factor of sandwich plate 

and G2d is the dynamics shear modulus of the core. 

6. Geometrical constraints 

In many cases constraining of the sizes of structures is 

required. We build into optimization model that restrict 

the minimal or maximal value of geometrical sizes. In 

this case we restrict the height of core: 

2min 2 2max
h h h .              (21) 

7. Constraint of homogenous plate maximal deflection 

At the optimization of sandwich plate the deflection 

constraint is active. For this reason we compare the costs 

of homogenous plate with sandwich plate by some 

deflection. We use the function of simply supported 

sandwich plate with uniformly distributed, lateral load 

[6]: 
4

0 1 3

pa
w c ,

Et
                (22) 

where c1=0.04464 and t is the thickness of 

homogenous plate. 

III. NUMERICAL DATA AND RESULTS 

In the Fig. 1. could be seen simply supported sandwich 

plate where data are: a =1000, 1500 (mm); kal=4,53x10
6 

(HUF/m
3
); kcut =350 (HUF/m); kc =200 (HUF/m

2
); 

km=40 (HUF/min);  ka=0,316: 1=0,0042; 2=0,0077;  

3=4=0,038; 6=0,33; h=3mm; c
*
=0,5; 2=0,22; te=10 

(min); tki=8 (min); Vh = 0,1 (m
3
/min); tki=8 (min); kfoam 
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=11 000 (HUF/m
3
); E= 210 (GPa) (steel), E=70 (GPa) 

(alumina); G2=3,1 (MPa); G2d=0,69 (MPa); all=115 

(MPa); τhall=30 (MPa); wall=3 (mm); ν=0,33, 2all=0,2  

(MPa); hall=30 (MPa); 2=0,22; h2min=20 (mm); 

h2max=350 (mm). 

After calculations there are the results: 
 

TABLE I 

SANDWICH PLATE WITH ALUMINA FACING 

 

a = 1000 mm and material is alumina. 
 

TABLE II 

SANDWICH PLATE WITH ALUMINA FACING 

 

a = 1500 mm and material is alumina. 
 

TABLE III 

SANDWICH PLATE WITH STEEL FACING 

 

a = 1000 mm and material is steel. 
 

TABLE IV 

SANDWICH PLATE WITH STEEL FACING 

 

a = 1500 mm and material is steel. 

In the tables (below) on the left side we see the results 

of sandwich plates (I-IV tables) and on the right side are 

the results of homogenous plate (V-VIII tables). From 

the results we can read that in case of homogenous plate 

more material of metal is needed to the same deflection. 

So the costs are higher than sandwich plates. 

 
 

TABLE V 
HOMOGENOUS PLATE FROM ALUMINA  

 

a = 1000 mm and material is alumina. 
 

TABLE VI  
HOMOGENOUS PLATE FROM ALUMINA  

 

a = 1500 mm and material is alumina. 
 

TABLE VII  

HOMOGENOUS PLATE FROM STEEL 

 

a = 1000 mm and material is steel. 
 

TABLE VIII  
HOMOGENOUS PLATE FROM STEEL 

 

a = 1500 mm and material is steel. 

Load 

p(N/mm2) 

h2(mm) Kmin (HUF) 

0,010 80 30 620 

0,015 121 31 086 

0,020 162 31 552 
0,025 203 32 017 

0,030 244 32 483 

0,035 284 32 949 
0,040 325 33 415 

Load 
p(N/mm2) 

h2(mm) Kmin (HUF) 

0,004 74 66 771 

0,006 110 67 716 
0,008 147 68 660  

0,010 184 69 604 

0,012 220 70 547 
0,014 258 71 490 

0,016 294 72 435 

0,018 331 73 378 

Load 

p(N/mm2) 

h2(mm) Kmin (HUF) 

0,010 82 5881 

0,015 123 6347 

0,020 164 6813 
0,025 205 7279 

0,030 246 7745 

0,035 287 8211 
0,040 327 8677 

Load 

p(N/mm2) 

h2(mm) Kmin (HUF) 

0,004 75,8 11 112 

0,006 113 12 056 

0,008 149 13 001 
0,010 186 13 944 

0,012 223 14 888 

0,014 260 15 831 
0,016 297 16 775 

0,018 333 17 719 

Load 

p(N/mm2) 

h(mm) Kmin (HUF) 

0,010 12,86 58 256 
0,015 14,71 66 636 

0,020 16,20 73 386 

0,025 17,45 79 049 

0,030 18,54 83 986 

0,035 19,52 88 426 

0,040 20,41 92 457 

Load 

p(N/mm2) 

h(mm) Kmin (HUF) 

0,004 16,26 165 730 

0,006 18,62 189 784 

0,008 20,50 208 946 

0,010 22,07 224 948 

0,012 23,46 239 104 

0,014 24,70 251 829 

0,016 25,82 263 170 

0,018 26,86 273 771 

Load 

p(N/mm2) 

h(mm) Kmin (HUF) 

0,010 5,25 5138 

0,015 5,15 6226 

0,020 5,95 7194 

0,025 6,65 8040 

0,030 7,29 8814 

0,035 7,89 9539 

0,040 8,41 10168 

Load 
p(N/mm2) 

h(mm) Kmin (HUF) 

0,004 11,46 31 174 

0,006 13,12 35 690 
0,008 14,44 39 280 

0,010 15,56 42 327 

0,012 16,53 44 966 
0,014 17,41 47 360 

0,016 18,20 49 509 

0,018 18,93 51 494 
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Fig. 2. Thickness of foam in case of alumina and 

 a= 1000 mm 

 

 
Fig. 3. Thickness of foam in case of alumina and 

 a= 1500 mm 

 

 
Fig. 4. Costs of sandwich and homogenous plates in case of 

alumina and a= 1000 mm 

 

 
Fig. 5. Costs of sandwich and homogenous plates in case of 

alumina and a= 1500 mm 

 
Fig. 6. Costs of sandwich and homogenous plates in case of 

steel and a= 1000 mm 

 

 
Fig. 7. Costs of sandwich and homogenous plates in case of 

steel and a= 1500 mm 

 

From the advantageous mechanical behavior of 

sandwich plate derive that the faces are far away from the 

bending axis so its bending stiffness is higher than the 

homogenous plate. It is the reason why sandwich plate is 

cheaper than the homogenous plate. 
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